Прямокутний трикутник
Прямокутний трикутник — трикутник, один із кутів якого прямий. Прямокутний трикутник займає особливе місце в планіметрії, оскільки для нього існують прості співвідношення між сторонами і кутами.
Сторони прямокутного трикутника мають власні назви. У прямокутному трикутнику сторони, які утворюють прямий кут, називаються катетами, а сторона, яка лежить проти прямого кута, називається гіпотенузою.
Теорема Піфагора
У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів його катетів, тобто
\[c^2 = a^2 + b^2\]
Теорема Піфагора
\[c^2 = a^2 + b^2\]
Властивості прямокутних трикутників
- Сума гострих кутів прямокутного трикутника дорівнює 90°.
- Якщо у прямокутному трикутнику один з гострих кутів дорівнює 30°, то катет протилежній цьому куту буде дорівнювати половині гіпотенузі.
- Медіана, падаюча на гіпотенузу прямокутного трикутника, ділить його на два рівнобедрених трикутника, оскільки медіана дорівнює половині гіпотенузи.
- Якщо описати коло навколо прямокутного трикутника, то гіпотенуза буде діаметром кола.
Ознаки рівності прямокутних трикутників
- Якщо катети одного прямокутного трикутника відповідно дорівнюють катетам іншого, то такі трикутники рівні.
- Якщо катет і прилеглий до нього гострий кут одного прямокутного трикутника відповідно дорівнюють катету і прилеглому до нього гострому куту іншого, то такі трикутники рівні.
- Якщо гіпотенуза і гострий кут одного прямокутного трикутника відповідно дорівнюють гіпотенузі та гострому куту іншого, то такі трикутники рівні.
- Якщо гіпотенуза і катет одного прямокутного трикутника відповідно дорівнюють гіпотенузі і катету іншого, то такі трикутники рівні.