Окремі співвідношення між числами

Окремі співвідношення між числами. Ілюстрація

Усім учням 6-го класу відома таблиця множення на 9. Виявляється, що на неї дуже схожа таблиця множення числа, складеного з дев'яток:

9999 × 2 = 19 998

9999 × 3 = 29 997

9999 × 4 = 39 996

9999 × 5 = 49 995

Учням можна дати завдання продовжити цю таблицю дома, подумати, якою буде таблиця множення числа 999 999 на 2, 3, 4 і т. д.

Читати далі »

Числа-велетні і числа-карлики

Числа-велетні і числа-карлики

У повсякденному житті нам здебільшого доводиться зустрічатися з порівняно невеликими числами, так що люди часто не мають правильного уявлення про спів­відношення між великими числами і малими.

Щоб наша думка була зрозумілою, наведемо кілька прикладів, де ми маємо справу з надзвичайно великими числами, тобто числами-велетнями, і надзвичайно малими, тобто числами-карликами.

Відстань від Землі до Сонця в сантиметрах приблизно дорівнює 1,5 · 1013, а відстань до  Плутона — найбільш віддаленої від Сонця планети — дорівнює 6 · 1014 см.

Читати далі »

Про обґрунтування поняття натурального числа

Натуральні числа, крім основної функції — характеристики кількості предметів, мають ще й іншу функцію — характеристику порядку предметів, розміщених у ряд.

Поняття порядкового числа (перший, другий, і т. д.), яке виникає у зв’язку з цією функцією, тісно переплітається з поняттям кількісного числа (один, два і т. д.). Зокрема, розміщення в ряд деяких предметів і наступне їх перелічування із застосуванням порядкових чисел — спосіб лічби, який застосовувався з давніх-давен (наприклад, якщо останній з перелічуваних предметів буде сьомий, то це й означає, що є сім предметів).

Читати далі »

Нескінченність ряду натуральних чисел

Коли дитина вперше знайомиться з натуральним числами і починає лічити, вона ще не розуміє, що цих чисел безліч. На початковій стадії розвитку математичних понять діти дуже часто запитують, яке число найбільше? Приблизно те саме спостерігалося під час розвитку лічби наших далеких предків.

Натуральний ряд чисел люди довго не уявляли нескінченним, хоч різні народи вже мали назви для дуже великих чисел. Пізніше, коли числовий запас був уже досить великий, деякі вчені подовжували натуральний ряд, виходячи за межі практичних потреб, і наближались до поняття нескінченності. Так, за три століття до н.е. у стародавній Індії вже вільно оперували числами будь якої величини.

Читати далі »

Числа-сукупності

Щоб поліпшити методи лічби, раціоналізувати їх, деякі народи почали кілька разів підряд лічити пальці однієї чи двох рук або двох рук і ніг. Легше також лічити зарубки (вузлики, палички, камінці), якщо їх об'єднати в однакові групи, наприклад, по 5, 10, 20 (метод групування). Саме в цьому напрямі в основному розвивалися натуральні числа, що й привело до створення десяткової, п'ятіркової, двадцяткової та інших систем числення.

Читати далі »

Предмет теорії ймовірностей

У наукових і технічних дослідженнях, а також на виробництві досить часто доводиться зустрічатися з до­слідами, що повторюються при однакових умовах. Вияв­ляється, що хоч як старанно ми не відновлювали б ос­новний комплекс умов, при яких має відбуватися дослід, проте результати будуть більш або менш відмінні між собою; вони, як кажуть, зазнають випадкового розсіювання. Вимірюватимемо, наприклад, кілька разів спад напруги на певній дільниці електричного кола за допомогою того самого вольтметра. Щоразу ми діставати­мемо дещо відмінні значення напруги, бо на результат вимірювання можуть впливати різні випадкові фактори, які важко (а то й неможливо) наперед урахувати. До таких факторів належать коливання окремих частин при­ладу, зміна температури середовища, його вологості, фізіо­логічні зміни в органах відчуття дослідника, його настрій і т. д.

Читати далі »

Абстрактні числа

Абстрактні числа

З ускладненням соціально-економічних умов життя людини дедалі розвивались і її здібності до абстракт­ного мислення. Разом з тим поступово втрачався пер­вісний конкретний характер числівників. Слово, яке означало до того і конкретний предмет і числівник, зберігає тепер лише друге значення. Водночас розбіжність, яка існувала при первісному господарстві в найменуван­нях числівників, потроху згладжувалась.

Читати далі »

Математичні ігри для малечі

Кілька математичних ігор, які можна використати як у позакласній роботі з учнями І-II класів, так і на уроках. Кожна гра - це вільне заняття, цікаве проведення часу. Разом з тим вона є джерелом знань учнів на ранніх стадіях математичної освіти. Вибирати ігри треба відповідно до віку дітей, змісту матеріалу уроку і рівня знань учнів.
Читати далі »

Математичні екскурсії (початкові класи)

Однією з цікавих і важливих форм позакласної роботи є математичні екскурсії.

На екскурсіях учні дістають початкові відомості з геометрії, розвивають окомір, а також набувають навичок практично застосовувати знання.

Під час екскурсії можна зібрати числові дані для складання задач на місцевому матеріалі, різних таблиць, діаграм, які потім використовуватимуться на уроках і заняттях математичного гуртка.

Читати далі »

Форми позакласної роботи (початкові класи)

У шкільній практиці розрізняють такі форми позакласної роботи:

  • індивідуальна,
  • групова,
  • масова.

Читати далі »