Математичний куточок у початковій школі

Математичний куточок можна створити в кожному класі. До його організації слід залучити дітей. Вони повинні виготовити під керівництвом учителя всі наочні посібники. Для цього слід використати гурткові заняття, підготовку до проведення загальношкільних заходів, математичні екскурсії тощо.

Математичний куточок у початковій школі

Так, цікаві задачі, які самостійно склали учні на зібраному під час екскурсій матеріалі, вони виконують на креслярському або іншому цупкому папері і зазначають клас, дату виконання роботи і прізвища виконавців і зберігають у математичному куточку. Там також зберігають цікаві історичні задачі, що відповідають вікові і рівню знань учнів.

Читати далі »

Введення від’ємних чисел народами Китаю та Індії

Від'ємні числа Введення від'ємних чисел було зумовлене, в першу чергу, розвитком алгебри як науки, що дає загальні способи розв'язування арифметичних задач незалежно від вихідних числових даних. Від'ємні числа були необхідні вже при розв'язуванні задач, які зводяться до рівнянь першого степеня з однією змінною. Можливий від'ємний розв'язок у таких задачах можна пояснити прикладами протилежних величин (протилежно напрямлені вектори, температура, вища і нижча від нуля, майно — борг і т. д.).
Читати далі »

Виникнення дробів

Поява аліквотних дробів дуже характерна для початкового розвитку поняття числа в стародавній цивілізації. Вона зумовлена процесом подрібнення цілого на частини. Цим можна пояснити виникнення аліквотних дробів виду \(1/n\) при невеликих \(n\) (наприклад, \(n = 2, 3, 4, 6, 8, 10\)), оскільки практично в той час навряд чи потрібно було ділити одиницю на велике число частин.

Інше (основне) джерело виникнення дробів — процес вимірювання, який з'явився майже одночасно з лічбою. В основі будь-якого вимірювання завжди лежить якась величина (довжина, об'єм, вага і т. д.). Вибір тієї чи іншої одиниці, яка є основою системи мір, зумовлювався конкретною історичною обстановкою.

Читати далі »

Переваги десяткової позиційної системи нумерації

Важко уявити систему числення, яка була б зручнішою від позиційної. За основу системи числення можна взяти будь-яке натуральне число. Це положення висловив видатний французький математик, фізик і філософ Паскаль (1623—1662).

Для систем числення з малою основою потрібно небагато цифр, але запис чисел виходить дуже довгий; для систем числення з великою основою, навпаки, потрібно більше цифр, зате запис чисел набагато коротший. У системах числення з досить великою основою таблиці множення громіздкі і важко запам'ятовуються.

На різних ступенях розвитку людства в різних країнах користувалися різними системами числення. Але чим розвинутішою була система лічби, тим більше наближалася вона до десяткової.

Читати далі »

Позиційні системи нумерації

Першою відомою нам позиційною системою числення є шістдесяткова система стародавніх вавилонян, яка виникла приблизно за 2000 р. до н. е. Сліди її збереглися і досі (співвідношення між градусом, мінутою секундою; годиною, хвилиною, секундою).

Вавилонські числа від 1 до 59

Рис.1. Вавилонські числа від 1 до 59.

Вавилоняни записували всі числа від 1 до 59 у десятковій (але не позиційній) системі за допомогою повторення двох «клинів». Число 60 (одиницю вищого розряду) записували так само, як і 1, але на більшій відстані від інших клинів. Цілі числа, більші за 59, записували в позиційній шістдесятковій системі. Клини, якими записували числа, могли щільно прилягати один до одного.

Читати далі »

Мова символів

Введення символів для чисел має величезне значення. Кожному зрозуміло, на скільки легше написати символ, який означає число «п’ять», ніж слова «клас множин, еквівалентних сукупності пальців на руці». Ми так звикли до наших числових символів (цифр), що, говорячи про число «сім», уявляємо саме 7, а не множину семи предметів. Велике число, наприклад 3427, ми уявляємо насамперед як символ цього числа, а не як множину з 3427 предметів.

Читати далі »

Як навчати учнів розв’язувати стереометричні задачі

Як навчати учнів розв’язувати стереометричні задачі

(Загальні зауваження)

Про те, як навчитись розв’язувати задачі, написано немало праць. У методичних посібниках подано загальні правила, поради, вказівки, які, на думку авторів, допомагають учням швидше навчитись розв’язувати задачі. Система порад, розроблена американським математиком Д. Пойа, найбільш відома, проте вона стосується всіх математичних задач, а тому досить загальна. Конкретнішою щодо геометричних задач є система порад Є. Ф. Данилової. Всього ця система містить 45 порад, що входять у такі шість груп:

  • Точно і чітко зрозуміти зміст задачі.
  • Скласти план розв’язування задачі.
  • Виконати план.
  • Обґрунтувати розв’язання.
  • Дослідити розв’язок.
  • Перевірити розв’язання.

Читати далі »

Методика розв'язування стереометричних задач (основні положення)

У процесі навчання математики задачі відіграють велику й багатопланову роль.

Методика розв’язування стереометричних задач (основні положення)

Розв'язування задач добре служить досягненню тих цілей, які ставляться перед навчанням математики в середній школі. Саме тому більше половини уроків математики відводиться розв'язуванню задач та виконанню вправ.

Розв'язуючи задачі, учні засвоюють найважливіші математичні поняття, оволодівають математичною символікою, навчаються виконувати доведення тощо.

Крім того, математичні задачі можуть готувати до засвоєння нових теоретичних питань, допомагати закріпленню здобутих знань, ілюструвати практичні застосування вивченого матеріалу. У процесі розв'язування задач в учнів формуються навички розумової праці, а також важливі риси характеру: наполегливість, уважність, зосередженість.

Читати далі »

Школа майбутнього (експеримент)

Пропозиція загальноосвітнім школам щодо участі у експерименті зі створення якісно нової навчально-виховної системи вільного  саморозвитку  учнів.

Школа майбутнього (експеримент)

Пропонується протягом кількох наступних років на базі 5-7 шкіл одного з міст України в експериментальному режимі впровадити якісно нову педагогічну технологію замість класно-урочної системи.

Експеримент має довести, що нова технологія гарантовано забезпечує всім школярам значно більш високий рівень моральної вихованості, інтелектуального, емоційного і фізичного розвитку, а головне — формує у них високий рівень готовності до різнобічного і постійного САМОВДОСКОНАЛЕННЯ впродовж шкільних років і подальшого життя. Модель такої школи викладена у книзі Г.Р. Кандибура «Школа, яка змінить Світ», з якою можна ознайомитися на сайті kandibur.com (рос.).

Читати далі »

Поняття логарифма (історична довідка)

Історично поняття логарифма розвинулось на основі порівняння арифметичної і геометричної прогресій. Ця ідея зустрічається ще в творі Архімеда «Псамміт» («Про число піщинок»). Вона могла бути зародком майбутньої ідеї логарифма, але пізніше була втрачена. Лише в епоху Відродження вона знову виникає і розвивається в сучасне поняття логарифма.

Читати далі »