Переваги десяткової позиційної системи нумерації

Важко уявити систему числення, яка була б зручнішою від позиційної. За основу системи числення можна взяти будь-яке натуральне число. Це положення висловив видатний французький математик, фізик і філософ Паскаль (1623—1662).

Для систем числення з малою основою потрібно небагато цифр, але запис чисел виходить дуже довгий; для систем числення з великою основою, навпаки, потрібно більше цифр, зате запис чисел набагато коротший. У системах числення з досить великою основою таблиці множення громіздкі і важко запам'ятовуються.

На різних ступенях розвитку людства в різних країнах користувалися різними системами числення. Але чим розвинутішою була система лічби, тим більше наближалася вона до десяткової.

Читати далі »

Позиційні системи нумерації

Першою відомою нам позиційною системою числення є шістдесяткова система стародавніх вавилонян, яка виникла приблизно за 2000 р. до н. е. Сліди її збереглися і досі (співвідношення між градусом, мінутою секундою; годиною, хвилиною, секундою).

Вавилонські числа від 1 до 59

Рис.1. Вавилонські числа від 1 до 59.

Вавилоняни записували всі числа від 1 до 59 у десятковій (але не позиційній) системі за допомогою повторення двох «клинів». Число 60 (одиницю вищого розряду) записували так само, як і 1, але на більшій відстані від інших клинів. Цілі числа, більші за 59, записували в позиційній шістдесятковій системі. Клини, якими записували числа, могли щільно прилягати один до одного.

Читати далі »

Мова символів

Введення символів для чисел має величезне значення. Кожному зрозуміло, на скільки легше написати символ, який означає число «п’ять», ніж слова «клас множин, еквівалентних сукупності пальців на руці». Ми так звикли до наших числових символів (цифр), що, говорячи про число «сім», уявляємо саме 7, а не множину семи предметів. Велике число, наприклад 3427, ми уявляємо насамперед як символ цього числа, а не як множину з 3427 предметів.

Читати далі »

Як навчати учнів розв’язувати стереометричні задачі

Як навчати учнів розв’язувати стереометричні задачі

(Загальні зауваження)

Про те, як навчитись розв’язувати задачі, написано немало праць. У методичних посібниках подано загальні правила, поради, вказівки, які, на думку авторів, допомагають учням швидше навчитись розв’язувати задачі. Система порад, розроблена американським математиком Д. Пойа, найбільш відома, проте вона стосується всіх математичних задач, а тому досить загальна. Конкретнішою щодо геометричних задач є система порад Є. Ф. Данилової. Всього ця система містить 45 порад, що входять у такі шість груп:

  • Точно і чітко зрозуміти зміст задачі.
  • Скласти план розв’язування задачі.
  • Виконати план.
  • Обґрунтувати розв’язання.
  • Дослідити розв’язок.
  • Перевірити розв’язання.

Читати далі »

Методика розв'язування стереометричних задач (основні положення)

У процесі навчання математики задачі відіграють велику й багатопланову роль.

Методика розв’язування стереометричних задач (основні положення)

Розв'язування задач добре служить досягненню тих цілей, які ставляться перед навчанням математики в середній школі. Саме тому більше половини уроків математики відводиться розв'язуванню задач та виконанню вправ.

Розв'язуючи задачі, учні засвоюють найважливіші математичні поняття, оволодівають математичною символікою, навчаються виконувати доведення тощо.

Крім того, математичні задачі можуть готувати до засвоєння нових теоретичних питань, допомагати закріпленню здобутих знань, ілюструвати практичні застосування вивченого матеріалу. У процесі розв'язування задач в учнів формуються навички розумової праці, а також важливі риси характеру: наполегливість, уважність, зосередженість.

Читати далі »

Школа майбутнього (експеримент)

Пропозиція загальноосвітнім школам щодо участі у експерименті зі створення якісно нової навчально-виховної системи вільного  саморозвитку  учнів.

Школа майбутнього (експеримент)

Пропонується протягом кількох наступних років на базі 5-7 шкіл одного з міст України в експериментальному режимі впровадити якісно нову педагогічну технологію замість класно-урочної системи.

Експеримент має довести, що нова технологія гарантовано забезпечує всім школярам значно більш високий рівень моральної вихованості, інтелектуального, емоційного і фізичного розвитку, а головне — формує у них високий рівень готовності до різнобічного і постійного САМОВДОСКОНАЛЕННЯ впродовж шкільних років і подальшого життя. Модель такої школи викладена у книзі Г.Р. Кандибура «Школа, яка змінить Світ», з якою можна ознайомитися на сайті kandibur.com (рос.).

Читати далі »

Поняття логарифма (історична довідка)

Історично поняття логарифма розвинулось на основі порівняння арифметичної і геометричної прогресій. Ця ідея зустрічається ще в творі Архімеда «Псамміт» («Про число піщинок»). Вона могла бути зародком майбутньої ідеї логарифма, але пізніше була втрачена. Лише в епоху Відродження вона знову виникає і розвивається в сучасне поняття логарифма.

Читати далі »

Окремі співвідношення між числами

Окремі співвідношення між числами. Ілюстрація

Усім учням 6-го класу відома таблиця множення на 9. Виявляється, що на неї дуже схожа таблиця множення числа, складеного з дев'яток:

9999 × 2 = 19 998

9999 × 3 = 29 997

9999 × 4 = 39 996

9999 × 5 = 49 995

Учням можна дати завдання продовжити цю таблицю дома, подумати, якою буде таблиця множення числа 999 999 на 2, 3, 4 і т. д.

Читати далі »

Числа-велетні і числа-карлики

Числа-велетні і числа-карлики

У повсякденному житті нам здебільшого доводиться зустрічатися з порівняно невеликими числами, так що люди часто не мають правильного уявлення про спів­відношення між великими числами і малими.

Щоб наша думка була зрозумілою, наведемо кілька прикладів, де ми маємо справу з надзвичайно великими числами, тобто числами-велетнями, і надзвичайно малими, тобто числами-карликами.

Відстань від Землі до Сонця в сантиметрах приблизно дорівнює 1,5 · 1013, а відстань до  Плутона — найбільш віддаленої від Сонця планети — дорівнює 6 · 1014 см.

Читати далі »

Про обґрунтування поняття натурального числа

Натуральні числа, крім основної функції — характеристики кількості предметів, мають ще й іншу функцію — характеристику порядку предметів, розміщених у ряд.

Поняття порядкового числа (перший, другий, і т. д.), яке виникає у зв’язку з цією функцією, тісно переплітається з поняттям кількісного числа (один, два і т. д.). Зокрема, розміщення в ряд деяких предметів і наступне їх перелічування із застосуванням порядкових чисел — спосіб лічби, який застосовувався з давніх-давен (наприклад, якщо останній з перелічуваних предметів буде сьомий, то це й означає, що є сім предметів).

Читати далі »