Архів категорії ‘‘Для допитливих’’

«Кенгуру» — міжнародний математичний конкурс

Kangaroo / «Кенгуру»

На початку 80-х років XX століття Пітер Холлоран, професор математики з Сіднею, вирішив організувати новий тип гри-конкурсу для австралійських школярів: підбірку задач із варіантами відповідей, перевірку яких здійснює комп’ютер. Тисячі школярів могли взяти участь у грі одночасно. Успіх австралійського національного математичного конкурсу був надзвичайний.

У 1991 році два французьких математики вирішили провести цю гру у Франції, назвавши її «Кенгуру» на честь своїх австралійських колег. Перша гра зібрала 120 000 учнів коледжів. Пізніше конкурс охопив також школярів та ліцеїстів.

Читати далі »

Паскаль — мова програмування

Паскаль (англ. Pascal) — одна з найбільш поширених мов програмування 80-90-х років, що має свою досить багату історію розвитку. Початок було поклало оголошення в 1965 р. конкурсу зі створення нової мови програмування — наступника АЛГОЛ-60.

Участь у конкурсі взяв швейцарський учений Ніклаус Вірт (нім. Niklaus Wirth), який працював доцентом на факультеті інформатики Стенфордського університету. Проект, запропонований ним був відкинутий комісією в 1967 р. Але Вірт не припинив роботу над створенням нової мови програмування.

Читати далі »

Введення від’ємних чисел народами Китаю та Індії

Від'ємні числа Введення від'ємних чисел було зумовлене, в першу чергу, розвитком алгебри як науки, що дає загальні способи розв'язування арифметичних задач незалежно від вихідних числових даних. Від'ємні числа були необхідні вже при розв'язуванні задач, які зводяться до рівнянь першого степеня з однією змінною. Можливий від'ємний розв'язок у таких задачах можна пояснити прикладами протилежних величин (протилежно напрямлені вектори, температура, вища і нижча від нуля, майно — борг і т. д.).
Читати далі »

Переваги десяткової позиційної системи нумерації

Важко уявити систему числення, яка була б зручнішою від позиційної. За основу системи числення можна взяти будь-яке натуральне число. Це положення висловив видатний французький математик, фізик і філософ Паскаль (1623—1662).

Для систем числення з малою основою потрібно небагато цифр, але запис чисел виходить дуже довгий; для систем числення з великою основою, навпаки, потрібно більше цифр, зате запис чисел набагато коротший. У системах числення з досить великою основою таблиці множення громіздкі і важко запам'ятовуються.

На різних ступенях розвитку людства в різних країнах користувалися різними системами числення. Але чим розвинутішою була система лічби, тим більше наближалася вона до десяткової.

Читати далі »

Мова символів

Введення символів для чисел має величезне значення. Кожному зрозуміло, на скільки легше написати символ, який означає число «п’ять», ніж слова «клас множин, еквівалентних сукупності пальців на руці». Ми так звикли до наших числових символів (цифр), що, говорячи про число «сім», уявляємо саме 7, а не множину семи предметів. Велике число, наприклад 3427, ми уявляємо насамперед як символ цього числа, а не як множину з 3427 предметів.

Читати далі »

Числа-велетні і числа-карлики

Числа-велетні і числа-карлики

У повсякденному житті нам здебільшого доводиться зустрічатися з порівняно невеликими числами, так що люди часто не мають правильного уявлення про спів­відношення між великими числами і малими.

Щоб наша думка була зрозумілою, наведемо кілька прикладів, де ми маємо справу з надзвичайно великими числами, тобто числами-велетнями, і надзвичайно малими, тобто числами-карликами.

Відстань від Землі до Сонця в сантиметрах приблизно дорівнює 1,5 · 1013, а відстань до  Плутона — найбільш віддаленої від Сонця планети — дорівнює 6 · 1014 см.

Читати далі »

Нескінченність ряду натуральних чисел

Коли дитина вперше знайомиться з натуральним числами і починає лічити, вона ще не розуміє, що цих чисел безліч. На початковій стадії розвитку математичних понять діти дуже часто запитують, яке число найбільше? Приблизно те саме спостерігалося під час розвитку лічби наших далеких предків.

Натуральний ряд чисел люди довго не уявляли нескінченним, хоч різні народи вже мали назви для дуже великих чисел. Пізніше, коли числовий запас був уже досить великий, деякі вчені подовжували натуральний ряд, виходячи за межі практичних потреб, і наближались до поняття нескінченності. Так, за три століття до н.е. у стародавній Індії вже вільно оперували числами будь якої величини.

Читати далі »

Числа-сукупності

Щоб поліпшити методи лічби, раціоналізувати їх, деякі народи почали кілька разів підряд лічити пальці однієї чи двох рук або двох рук і ніг. Легше також лічити зарубки (вузлики, палички, камінці), якщо їх об'єднати в однакові групи, наприклад, по 5, 10, 20 (метод групування). Саме в цьому напрямі в основному розвивалися натуральні числа, що й привело до створення десяткової, п'ятіркової, двадцяткової та інших систем числення.

Читати далі »

Предмет теорії ймовірностей

У наукових і технічних дослідженнях, а також на виробництві досить часто доводиться зустрічатися з до­слідами, що повторюються при однакових умовах. Вияв­ляється, що хоч як старанно ми не відновлювали б ос­новний комплекс умов, при яких має відбуватися дослід, проте результати будуть більш або менш відмінні між собою; вони, як кажуть, зазнають випадкового розсіювання. Вимірюватимемо, наприклад, кілька разів спад напруги на певній дільниці електричного кола за допомогою того самого вольтметра. Щоразу ми діставати­мемо дещо відмінні значення напруги, бо на результат вимірювання можуть впливати різні випадкові фактори, які важко (а то й неможливо) наперед урахувати. До таких факторів належать коливання окремих частин при­ладу, зміна температури середовища, його вологості, фізіо­логічні зміни в органах відчуття дослідника, його настрій і т. д.

Читати далі »

Число пі

Пі-число. Ілюстрація (джерело: mozg.by)

Пі-число (число пі) — число, яке дорівнює відношенню довжини кола до його діаметру. Пі-число представляється нескінченним десятковим дробом 3,14159265... Позначенням цього числа грецькою буквою \(\large\pi\) вперше користувався англійський математик У. Джонсон (1706), і воно стало загальноприйнятим після однієї з робіт петербурзького математика Л. Ейлера (1736). Назва та позначення \(\large\pi\) походить від початкової букви грецького слова \(\large\pi \varepsilon \varrho \iota \varphi \acute{\varepsilon} \varrho \varepsilon \iota \alpha\) — периферія, коло.

Наприкінці XVIII ст. німецьким математиком І. Ламбертом і французьким математиком А. Лежандром було доведено, що число пі є ірраціональним, а в 1882 р. німецький математик Ф. Ліндеман довів, що воно не може задовольняти ніякому алгебраїчному рівнянню з цілими коефіцієнтами, тобто є трансцендентним.

З теореми Ліндемана випливає неможливість побудови за допомогою циркуля і лінійки відрізка прямої довжиною, що дорівнює \(\large\pi\); ця теорема остаточно встановлює неможливість розв'язання задачі про квадратуру кола.
Читати далі »