Архів за Липень, 2009

Алгоритм Евкліда

(Л. В. Лобанова, 1989)

Щоб знайти найбільший спільний дільник двох чисел, є дуже простий спосіб, відомий під назвою алгоритму Евкліда, або способу послідовного ділення.

Читати далі »

Про трикутники Герона

(М. Ю. Корнілов, В. В. Плахотник)

Трикутниками Герона називають трикутники, в яких дов­жини сторін і площа — цілі числа. Класичні приклади таких трикутників — трикутники із сторонами 3, 4, 5 і 13, 14, 15.

Читати далі »

Про числа Фібоначчі

На початку XIII ст. купець з італійського міста Піза Лео­нардо написав «Книгу про абак», де він виклав зібрані під час подорожі по країнах Сходу відомості з арифметики та алгебри. У цій енциклопедії тогочасної математики Леонардо розгля­дає і деякі нові, невідомі попередникам задачі. Більшість з них тепер становить інтерес тільки для істориків математики. Але це не стосується знаменитої «задачі про кролів».

Читати далі »

Хто шукає, той завжди знаходить

(Льюїс Керрол «Аліса в країні чудес»)

— Чешірський Котику... — несміливо заговорила Аліса...

— Скажіть, будь ласка, як мені вийти звідси?

— Це великою мірою залежить від того, куди ти хочеш потрапи­ти, — відповів Кіт.

— Та мені байдуже... — почала Аліса.

— Тоді все одно, куди йти, — сказав кіт.

— ...аби потрапити куди-небудь, — закінчила Аліса.

— Ну, куди-небудь ти неодмінно потрапиш, — запевнив її Кіт, — якщо не лишишся там, де стоїш.

Читати далі »

Квадратура круга. Історична довідка

Постановка задачі: За допомогою лише циркуля і лінійки без поділок, за скінченне число операцій побудувати квадрат, рівновеликий даному кругу.

Найбільш древня і популярна серед знаменитих математичних задач. Учені різних часів, відшукуючи її розв'язання, збагатили математику цілою низкою видатних відкриттів.

Читати далі »

Єгипетські піраміди

У XXX ст. до н. е. вже вміли лічити до 100 000. У цей час зводиться ансамбль великих пірамід у Гізі, які понад п'ять тисячоліть викликають безмірне захоплення і подив. З III ст. до н. е., коли греки склали список семи чудес світу, єгипетські піраміди незмінно залишаються чудом №1.

Читати далі »